skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boggust, Angie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While interpretability methods identify a model’s learned concepts, they overlook the relationships between concepts that make up its abstractions and inform its ability to generalize to new data. To assess whether models’ have learned human-aligned abstractions, we introduce abstraction alignment, a methodology to compare model behavior against formal human knowledge. Abstraction alignment externalizes domain-specific human knowledge as an abstraction graph, a set of pertinent concepts spanning levels of abstraction. Using the abstraction graph as a ground truth, abstraction alignment measures the alignment of a model’s behavior by determining how much of its uncertainty is accounted for by the human abstractions. By aggregating abstraction alignment across entire datasets, users can test alignment hypotheses, such as which human concepts the model has learned and where misalignments recur. In evaluations with experts, abstraction alignment differentiates seemingly similar errors, improves the verbosity of existing model-quality metrics, and uncovers improvements to current human abstractions. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026